Effets des phtalates sur le développement et les fonctions placentaires: impact du mono-2-ethylhexyl phtalate (MEHP) sur l'expression et l'activité de PPARy (PHTALATPREG)

Rencontres scientifiques iuillet 2019

Perturbateurs

189, rue de Bercy - 75012 Paris

endocriniens Recherche et perspectives

Séverine DEGRELLE

INSERM UMR-S1139 - Physiopathologie & Pharmacotoxicologie Placentaire Humaine / Microbiote Pré & Postnatal Directeur: Thierry Fournier

Phtalates

Les Phtalates sont un groupe de produits chimiques industriels utilisés pour rendre des plastiques durs comme le chlorure de polyvinyle (PVC) plus malléables ou flexibles

Absorption : ingestion (90%), inhalation, cutanée, perfusions / **Elimination :** urines, selles

Phtalates & Santé

Phtalate primaire Métabolites

DEHP	MEHP, MEHHP, MEOHP
DBP	MBP
DEP	MEP
BBzP	MBzP
DMP	MMP

Risque pour la santé

∠ Nombre de spermatozoïdes

→ Fertilité féminine

DEHP

↓ Lipases

MEHP

 \downarrow ω, ω-n, β, α oxydations

Métabolites oxydés

Femmes enceintes:

□ du temps gestationnel

Naissances prématurées& Petits poids à la naissance

(Tetz et al., 2013)

Perturbateurs endocriniens

= ligand des récepteurs nucléaires PPARs (Peroxysome proliferator-activated receptor)

PPARγ

(Desvergne et al, 2009) (Adibi, et al., 2010)

PPARy

(Peroxysome Proliferator-Activated Receptor γ)

- un récepteur nucléaire
- se lie à l'ADN (PPRE PPAR Response Element)
- hétérodimérisation obligatoire avec son partenaire exclusif RXR (récepteur de l'acide rétinoïque)
- son activation dépend de la présence de ses ligands

Ligands naturels:

Acides gras polyinsaturés Acides gras oxydés (9-HODE & 13-HODE) 15-deoxy-Δ12,14 prostaglandin-J2

Ligands synthétiques:

Rosiglitazone Troglitazone **GW1929**

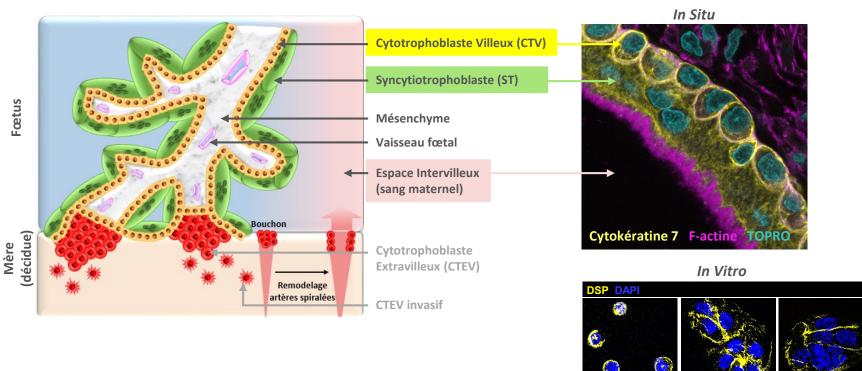
Inhibiteurs synthétiques:

GW9662

- PPARy est essentiel pour le développement placentaire

(Souris: KO PPARγ-/-) [Kubota et al, Moll Cell 1999; Barak et al, Moll Cell 1999; Wendling et al, PNAS 1999]

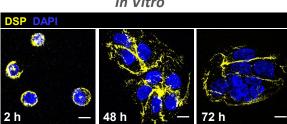
- Impliqué dans : le métabolisme des lipides la réponse au stress oxydatif la réponse inflammatoire

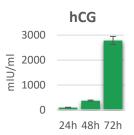

la différenciation trophoblastique

[Pour revue : Kadam et al. Syst Biol Reprod Med., 2015]

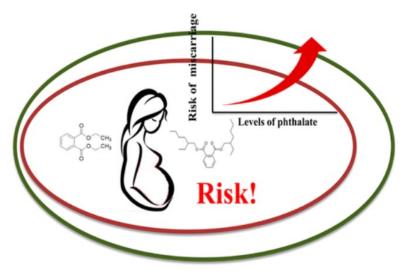
- L'activation de PPARy induit la différenciation des CTV->ST

[Schaiff et al. JCEM, 2000; Tarrade et al, Endocrinology, 2001]


Placenta humain

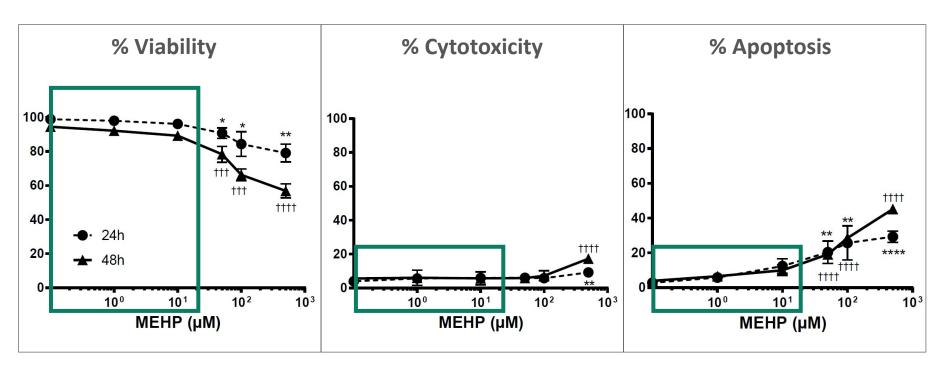

Fonctions principales du syncytiotrophoblaste :

- Échanges fœto-maternels
- Fonction endocrine



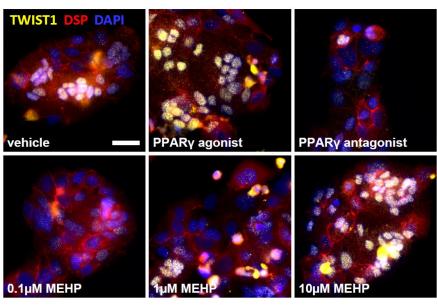
Différenciation spontanée des CTV en ST

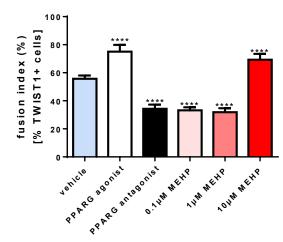
Projet PhtalatPreG


- Effet des phtalates sur le développement placentaire humain ?
 - Effet du MEHP sur la différenciation du trophoblaste?
 - Effet du MEHP sur l'activité de PPARγ?

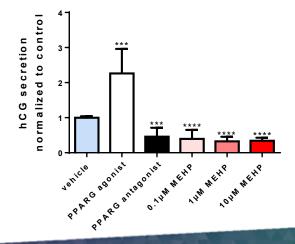
https://medicalxpress.com/news/2015-09-exposure-phthalates-linked-pregnancy-loss.html

Effet du MEHP sur les trophoblastes primaires


Gamme de concentration : 0.1, 1, 10, 50, 100 & 500 μM ----- 24h


 \Rightarrow [MEHP] utilisées : 0.1, 1 & 10 μ M

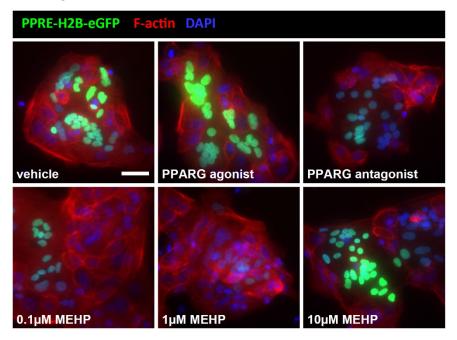
Effet du MEHP sur la différenciation du trophoblaste

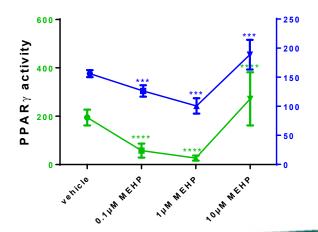

48h après traitement

TWIST1 = marqueur nucléaire de différenciation en syncytiotrophoblaste (Degrelle & Fournier, Methods Mol Biol, 2018)

- □ 0.1μM & 1μM MEHP \(\) la fusion cellulaire
- □ 10μM MEHP la fusion cellulaire

- Le MEHP inhibe la sécrétion d'hCG
- **⇒** MEHP = perturbateur endocrinien

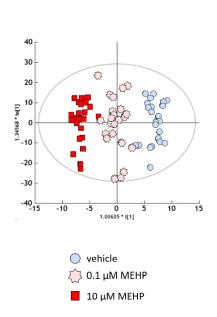

Effet du MEHP sur l'activité de PPARy

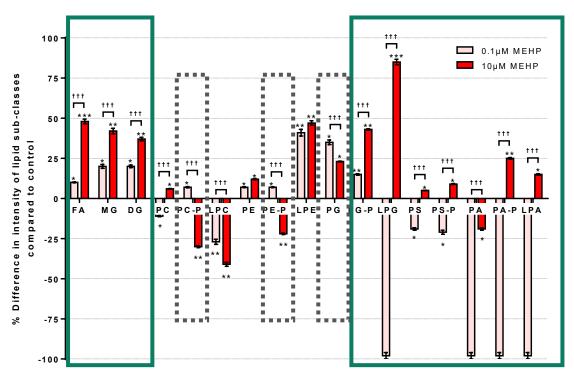

PPRE-HZB-eGFP 6009 bp PPRE-pNL1.3 4654 bp D1 D3

Plasmides déposés dans Addgene (<u>addgene.org</u>) PPRE-H2B-eGFP #84393 et PPRE-pNL1.3 #84393 (Degrelle et al., PPAR Res., 2017)

Trophoblast differentiation

48h après traitement

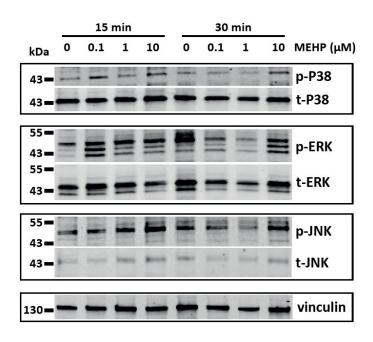




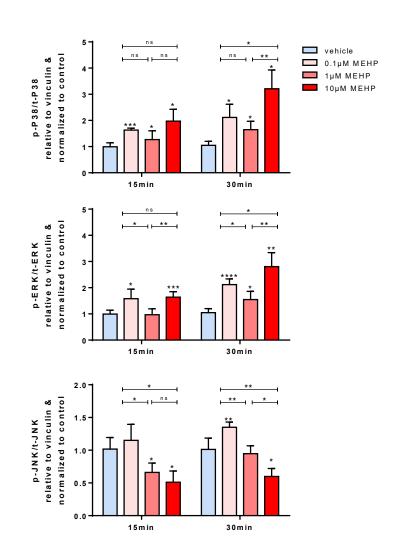
- ⇒ 0.1μM & 1μM MEHP ≥ l'activité de PPARγ
- □ 10μM MEHP
 ☐ l'activité de PPARγ
- Courbe dose-réponse en forme de U du MEHP sur l'activité de PPARγ

Effet du MEHP sur les profils lipidiques

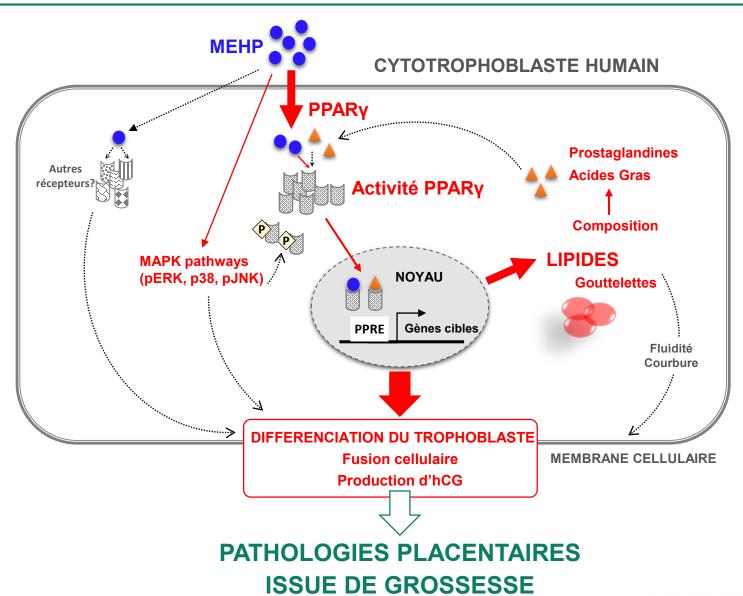
48h après traitement



FA: fatty acids, MG: monoacylglycerols, DG: diacylglycerols, PC: phosphatidylcholines, PC-P: PC plasmalogens, LPC: lyso-PC, PE: phosphatidylethanolamines, PE-P: PE plasmalogens, LPE: lyso-PE, PG: phosphatidylglycerols, PG-P: PG plasmalogens, LPG: lyso-PG, PS: phosphatidylserines, PS-P: PS plasmalogens, PA: phosphatidic acids, PA-P: PA plasmalogens, LPA: lyso-PA.


- Profils lipidiques ≠ entre 0.1 et 10 μM

Effet du MEHP sur les voies des MAPKs



JNK :
 □ l'activité en fonction de la [MEHP]

Conclusions

Remerciements

INSERM UMR-S1139

Hussein Shoaito Audrey Chissey Eva Guilloteau Jean Guibourdenche Sophie Gil Thierry Fournier

Services Obstétriques

Hôpital Cochin/Port-Royal **URC-CIC Cochin** Hôpital privé d'Anthony Institut mutualiste Montsouris

Plateformes Technologiques Université Paris Descartes

Histologie - Faculté de Pharmacie Imagerie - Institut Cochin

UMR 8638 - CNRS COMETE

Julia Petit Nicolas Auzeil Olivier Laprévote

"WE'RE GOING TO ASK THE DOCTORS TO DISCONNECT YOUR LIFE SUPPORT, HOWARD. WE CERTAINLY DON'T WANT YOU ABSORBING ANY PHTHALATES ... "

